

Syllabus

ESC 213 Strength of Materials

General Information

Date

March 7th, 2018

Author

Selim Araci

Department

Science and Technology

Course Prefix

ESC

Course Number

213

Course Title

Strength of Materials

Course Information

Credit Hours

3

Lecture Contact Hours

3

Lab Contact Hours

0

Catalog Description

A study of the basic concepts of strength of materials; stress and strain in external loading, shear and torsion; centroids and moments of inertia; shear, moment, and stress in beams; load, shear, and moment diagrams; design and deflection of beams (statically determinate and indeterminate); combined stresses; welded, bolted and riveted joints.

Key Assessment

This course does not contain a Key Assessment for any programs

Prerequisites

ESC 211

Co-requisites

None

First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category None

FLCC Values

Institutional Learning Outcomes Addressed by the Course

Vitality Inquiry Perseverance Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

- 1. Identify the fundamental modes of deformation: axial, torsional, bending.
- 2. Calculate stresses and strains caused by fundamental modes of deformation.
- 3. Apply methods of stress and strain analysis to solve the reaction forces in a statically indeterminate structure.

Outline of Topics Covered

- I. Introduction, forces and stresses, axial loading, normal stress
- II. Shearing stress, application to the analysis of simple structures
- III. Stress on an oblique plane under axial loading, components of stress
- IV. Ultimate and allowable stress, factor of safety
- V. Normal strain under axial loading, stress-strain diagram
- VI. Hooke's law, modulus of elasticity, elastic vs plastic deformation, fatigue
- VII. Deformations of members under axial loading

- VIII. "Tensile testing" experiment
- IX. Statically indeterminate problems
- X. Problems involving temperature changes
- XI. Poisson's ratio
- XII. Generalized Hooke's law for multi-axial loading, dilatation, bulk modulus
- XIII. Shearing strain, shear modulus
- XIV. Saint-Venant's principle, stress concentrations
- XV. Plastic deformations
- XVI. Stresses and deformations in a circular shaft
- XVII. Statically indeterminate shafts
- XVIII. Stresses and deformations in a symmetric member in pure bending
- XIX. Bending of members made of several materials
- XX. Eccentric axial loading in a plane of symmetry
- XXI. Unsymmetric bending
- XXII. General case of eccentric loading
- XXIII. Transverse loading of prismatic members, shear on a horizontal plane
- XXIV. Stresses under combined loadings
- XXV. Transformation of plane stress, principal stresses, maximum shearing stress
- XXVI. Determination of principal stresses and Mohr's circle
- XXVII. Design of prismatic beams, shear and bending moment diagrams
- XXVIII. Relations among load, shear, and bending moment
- XXIX. Deformation of a beam under transverse loading
- XXX. Equation of the elastic curve
- XXXI. Statically indeterminate beams